Fernando Martínez Martínez
Profesor/a Ayudante Doctor/a

Centro

Esc. Tec. Sup. de Ingeniería Informática

Departamento

Informática y Estadística

Área

Ciencia de la Comp. e Inteligencia Artificial
Presentación
  • Fernando Martínez is an associate professor of  computer science and statistics at the Universidad Rey Juan Carlos (URJC). His research interests include machine learning, deep learning, social network analysis, data collection, biostatistics, bioinformatics, inferential statistics, operations research and experimental design.

    He received his PhD at the URJC in February 2024. His thesis focused on the development of a standardized pipeline for analysis of social networks, applying modern and traditional techniques destined to reveal all the available information in such networks, palliating the lack of replication and standardization in this field. Besides, as part of this thesis, the pipeline was aimed to be deployed in a public dashboard for social network analysis.

    Furthermore, he was part of the CS-Track project focused on Citizen Science. He is also participating in the project CoTEDI, aimed to analyse the development of Computational thinking in education aiming for divesity and inclusion.

Docencia impartida en el curso actual
Trabajos de fin de estudios
Filtrar trabajos fin de estudios tutorizados o dirigidos
Tipo de trabajo
Relación
Histórico docente (últimos 10 cursos)
Listado de proyectos (Últimos 10 años)
Códigos de investigador
Métricas de impacto por agencia
Agencia Nº documentos Nº citas Índice H Q1 D1 IFNB IFNESI
Logo de la agencia 'Web of Science' Web of Science 9 23 3 3 2 0,55 0,44
Logo de la agencia 'Scopus' Scopus 9 30 4 4 2 0,35 -
Publicaciones
Filtrar publicaciones y actividad investigadora
Mejor cuartil
Información adicional
  • Krukowski, S., Martínez-Martínez, F., & Hoppe, H. U. (2023, August). Differential Characteristics and Collaborative Interactions of Institutional and Personal Twitter Accounts in a Citizen Science Context. In International Conference on Collaboration Technologies (pp. 68-83). Cham: Springer Nature Switzerland.

    Martínez-Martínez, F., Roldán-Álvarez, D., Martín, E., & Hoppe, H. U. (2023). An analytics approach to health and healthcare in citizen science communications on Twitter. Digital Health9, 20552076221145349.

    De-Groot, R., Golumbic, Y. N., Martínez Martínez, F., Hoppe, H. U., & Reynolds, S. (2022). Developing a framework for investigating citizen science through a combination of web analytics and social science methods¿The CS Track perspective. Frontiers in Research Metrics and Analytics7, 988544.

    Roldán-Álvarez, D., Martínez-Martínez, F., Martín, E., & Haya, P. A. (2021). Understanding discussions of citizen Science around sustainable development goals in Twitter. IEEE Access9, 144106-144120.


    Roldán-Álvarez, D., Martínez-Martínez, F., & Martín, E. (2021, July). Citizen science and open learning: A Twitter perspective. In 2021 International Conference on Advanced Learning Technologies (ICALT) (pp. 6-8). IEEE.





Información general
Méritos